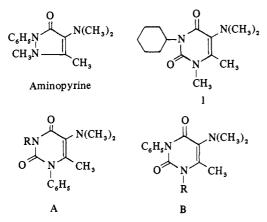
Table 1

							-				
No.	R	A		B	Salt	Method	% yield ^a	Recrystn ^b solvent	Mp,°C	Formula ^g	Antiinflam act, % inhib of edema
	C₅H₅NH _\ S	Ĭ	O (Phth)			С	72	Е	222-223	C17H12N4O3S	5
2)	N — 1	N H	0 0	н	HC1 ^C	D	90	E	188-190 dec	C9H10N4OS · HCl	29
3	N ^O		Phth			С	60	Ε	132-133	C12H8N2O4	
4)	N-0~		Phth			С	66	Ε	206-208	C18H12N2O4	
5 }	C ₆ H ₅	Н		Н	HCI	D	86	F	192-194 dec	C ₁₀ H ₁₀ N ₂ O ₂ HCl ^d	55
6)	N ⁰ Y	CH₃	Phth			С	70	Е	143-145	C ₁₄ H ₁₂ N ₂ O ₄	
7 \$	CH ₃	Н		н	HC1	D	70	F	161-163 dec	C6H10N2O2 HCle	24
8)	^N √		Phth			С	50	Е	146-148	C₁₃H₀N₃O₃	
9∮	⊾ _N ⊎	Н		Н	2HCl	D	90	F	140-142 dec	C₅H ₇ N₃O · 2HCl <i>f</i>	36

^aYield of once recrystallized material. ^bE, EtOH; F, MeOH-Et₂O. ^cFree base, mp 149-151°. ^dC: calcd, 52.99; found, 52.27. Nmr (DMF) δ 5.56 (s, 2 H), 7.32 (s, 1 H), 7.44-7.50 (m, 5 H). ^eNmr (D₂O) δ 2.16 (s, 3 H), 2.31 (s, 3 H), 4.86 (s, 2 H). ^fC: Calcd, 30.32; found, 30.82. H: Calcd, 4.58; found, 5.18. Nmr (D₂O) δ 5.32 (s, 2 H), 8.75-8.82 (m, 3 H). ^gAll compds were analyzed for C, H, N.

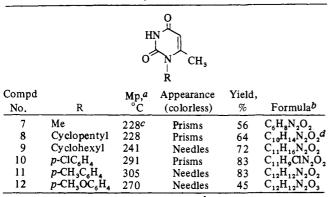
References

- (1) G. H. Hamor, D. M. Breslow, and G. W. Fisch, J. Pharm. Sci., 59, 1752 (1970) (previous paper).
- (2) W. G. Spector and D. A. Willoughby, Ann. N. Y. Acad. Sci., 116, 843 (1969).
- (3) J. D. Reid and D. M. Shepherd, Life Sci, 1, 5 (1963).
- (4) D. Aures, G. H. Hamor, W. G. Clark, and S. S. Laws, Int. Congr. Pharmacol., 4th, 179 (1969).
- (5) (a) A. F. McKay, D. L. Garmaise, G. Y. Paris, and S. Gelblum, Can. J. Chem., 38, 343 (1960); (b) E. L. Schumann, R. V. Heinzelman, M. E. Greig, and W. Veldkamp, J. Med. Chem., 7, 329 (1964); (c) D. G. Martin, E. L. Schumann, W. Veldkamp, and H. Keasling, *ibid.*, 8, 456 (1965).
- (6) C. A. Winter, E. A. Risley, and G. W. Nuss, Proc. Soc. Exp. Biol. Med., 111, 544 (1962).
- (7) D. Aures and W. G. Clark, Anal. Biochem., 9, 35 (1964).
- (8) Cancer Chemother. Rep., 25, 1 (1962).
- (9) 1. Simiti and L. Proinov, *Rev. Roum. Chim.*, 11, 429 (1966).
 (10) P. Maggioni, G. Gaudiano, and P. Bravo, *Gazz. Chim. Ital.*, 96, 443 (1966).
- (11) H. G. Sen, D. Seth, U. N. Joshi, and P. Rajagopalan, J. Med. Chem., 9, 431 (1966).
- (12) N. K. Kochetkov, E. D. Khomutova, and M. V. Bazilevskii, *Zh. Obshch. Khim.*, 28, 2736 (1958); *Chem. Abstr.*, 53, 9187f (1959).
- (13) A. Hirschberg and P. E. Spoerri, J. Org. Chem., 26, 2356 (1961).


Pyrimidine Derivatives and Related Compounds. 15.¹ Synthesis and Analgetic and Antiinflammatory Activities of 1,3-Substituted 5-Amino-6-methyluracil Derivatives

Shigeo Senda,* Kosaku Hirota, and Kazuo Banno

Gifu College of Pharmacy, Mitahora, Gifu, Japan. Received August 12, 1971


3-Alkyl-5-dimethylamino-6-methyl-1-phenyluracils (A), 1-alkyl-5-dimethylamino-6-methyl-3-phenyluracils (B) and their related compounds were synthesized and their acute toxicities and analgetic, antipyretic, and antiinflammatory activities were investigated. In the synthesis, substituted ureas were treated with diketene or ethyl acetoacetate, the 5 position of the resulting 1-substituted 6-methyluracils or 3-substituted 6-methyluracils or 3-substituted 6-methyluracils was halogenated, and then the intermediate was refluxed in DMF with various amines to give 47 new 1,3-substituted 5-amino-6-methyluracil derivatives. The analgetic activities of group A (where 3-alkyl is Me or allyl) and group B (where 1-alkyl is Me, Et, or allyl) were of the same or higher order than that of aminopyrine combined with lower toxicity (0.5-0.25). Antiinflammatory activities of many of them were also comparable to or higher than that of benzydamine.

Senda, *et al.*, had previously synthesized² 3-cyclohexyl-5-dimethylamino-1,6-dimethyluracil (1) in which the pyrazolone ring of aminopyrine was expanded to a uracil ring. However, some difficulties were encountered in the synthesis of the uracil derivatives which have now been overcome. We have also investigated a relation between the pharmacological actions (analgetic, antipyretic, and antiinflammatory actions and acute toxicities) and chemical structures with particu-

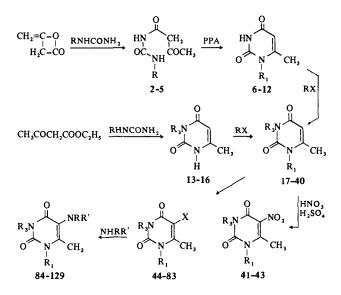
lar attention to 3-alkyl-5-dimethylamino-6-methyl-1-phenyluracils (A) and 1-alkyl-5-dimethylamino-6-methyl-3-phenyluracils (B).

Table 1. 1-Substituted 6-Methyluracils

^{*a*}All compds were recrystd from MeOH. ^{*b*}All compds were analzyed for C, H, N. ^{*c*}Lit.³ mp 220°. ^{*d*}C: calcd, 61.83; found, 61.36.

Table 1	. 1,	3-Disubstituted	6-Methyluracils
---------	------	-----------------	-----------------

Chemistry. 1-Substituted 6-methyluracils [substituents: Me (7), cyclopentyl (8), cyclohexyl (9), p-ClC₆H₄ (10), p-CH₃C₆H₄ (11), and p-CH₃OC₆H₄ (12)] were synthesized (Table I) by a condensation of monosubstituted ureas with diketene followed by a ring closure similar to that used in the synthesis of 6-methyl-1-phenyluracil (6)⁴ where phenylurea was condensed with diketene in AcOH and the resulting intermediate 1-acetoacetyl-3-phenylurea (2) was subjected to a ring closure. In the present study, it was possible to isolate and identify some of the intermediate 3-substituted 1-acetoacetylureas but, in general, heating without isolating such an intermediate was advisable.


When the resulting 1-substituted 6-methyluracils (6-12) and 3-substituted 6-methyluracils⁵ [substituents: Ph (13), cyclopentyl (14), benzyl (15), and phenethyl (16)] were treated with alkylating agents (Me₂SO₄, RX), N-1 and N-3, respectively, were alkylated to give 1,3-disubstituted 6-methyluracils (17-40) (Table II). In these reactions 3-alkylation proceeded more easily than that at the 1 position of a pyrimidine ring.

Two methods were utilized for the introduction of secondary amines into position 5 of 1,3-substituted 6-methyluracils leading to compounds of the A and B series. The first involved nitration of the pyrimidine, reduction of this moiety, and subsequent alkylation of this amine. 9 and 20 afforded the corresponding 5-nitro compounds (41, 42) in high yield. However where a Ph group was present in the 1 position (17) dinitration occurred (43). This method does present limitations and an additional reaction step compared with the second procedure. This latter method involves halogenation at the 5 position and replacement with the appropriate amine.

Chlorination of 6 and 13 by NaOCl gave the appropriate 5-chloro analogs (44 and 45) in poor yields (21-25%). Application of SO_2Cl_2 in the presence of FeCl₃ resulted in an

Compd			Mp,	Appearance	Recrystn	Yield,	
No.	R ₁	R3	°C	(colorless)	solvent	%	Formula ^a
17	Ph	Me	300	Needles	AcOH	79	C ₁₂ H ₁₂ N ₂ O ₂
18	Me	Me	114b	Needles	H ₂ O	54	$C_{2}H_{10}N_{2}O_{2}$
19	Cyclopentyl	Me	146	Leaflets	MeOH-H,O	95	C ₁ ,H ₁₆ N ₂ O ₂
20	Cyclohexyl	Me	214	Needles	MeOH	95	$C_{12}H_{18}N_{2}O_{2}$
21	p-ClC ₆ H ₄	Me	299	Leaflets	MeOH	63	C ₁₂ H ₁₁ CIN ₂ O
22	p-CH ₃ C ₆ H ₄	Me	275	Needles	MeOH	40	$C_{13}H_{14}N_2O_2$
23	p-CH_OC_H	Me	234	Leaflets	MeOH	92	$C_{13}H_{14}N_{2}O_{3}$
24	Me	Ph	210	Needles	MeOH	73	$C_{12}H_{12}N_{2}O_{2}$
25	Ме	Cyclopentyl	120	Leaflets	MeOH-H ₂ O	60	$C_{11}H_{16}N_{2}O_{2}$
26	Me	Cyclohexyl	137	Needles	MeOH-H ₂ O	70	C ₁₂ H ₁₈ N ₂ O ₂
27	Me	PhCH ₂	165	Prisms	MeOH	65	$C_{13}H_{14}N_{2}O_{2}$
28	Me	PhCH ₂ CH ₂	135	Needles	MeOH	83	$C_{14}H_{16}N_{2}O_{2}$
29	Ph	Et	211	Prisms	MeOH	95	$C_{13}H_{14}N_{2}O_{2}$
30	Ph	<i>i</i> -Pr	182	Needles	MeOH	Trace	$C_{14}H_{16}N_{2}O_{2}$
31	Ph	<i>n</i> -Bu	186	Needles	MeOH	76	$C_{15}H_{18}N_{2}O_{2}$
32	Ph	HOCH ₂ CH ₂	145	Needles	AcOEt	81	$C_{13}H_{14}N_{2}O_{3}$
33	Et	Ph	177	Needles	Ligroin	95	$C_{13}H_{14}N_2O_2^{C}$
34	n-Bu	Ph	99	Needles	Ligroin	77	$C_{15}H_{18}N_2O_2$
35	HOCH ₂ CH ₂	Ph	140	Needles	H ₂ O	53	C ₁₃ H ₁₄ N ₂ O ₃
36	Ph	EtOOCCH,	176	Needles	MeOH	85	$C_{15}H_{16}N_2O_4$
37	Ph	H,NCOCH,	254	Prisms	MeOH	63	C ₁₃ H ₁₃ N ₃ O ₃
38	EtOOCCH,	Ph	123	Needles	MeOH-H ₂ O	65	$C_{15}H_{16}N_2O_4$
39	Cyclopentyl	EtOOCCH ₂	98	Prisms	Ligroin	64	$C_{14}H_{20}N_{2}O_{4}$
40	Cyclohexyl	EtOOCCH,	132	Needles	MeOH-H ₂ O	58	$C_{15}H_{22}N_{2}O_{4}$

^aAll compds were analyzed for C, H, N. ^bLit.⁶ mp 110°. ^cN: calcd, 12.17; found, 12.88.

improved conversion (55-82%) as shown in Table III.

5-Bromination of the pyrimidine ring gave 1,3-substituted 5-bromo-6-methyluracils (49-70) (Table III) com-

Table 111. 1,3-Substituted 5-Halo-6-methyluracils

paratively easily and in high yields by adding a quantitative amount of Br_2 in glacial AcOH. However, this method was not suitable for the halogenation of 6-methyluracil derivatives having 2-hydroxyethyl or alkenyl groups at the 1 or 3 position since various side reactions other than 5-halogenation took place. Thus we synthesized 1,3-substituted 5-halo-6-methyluracils (71-78) by the reaction of 5-halo-6-methyl-1-phenyluracils (71-78) by the reaction of 5-halo-6-methyl-1-phenyluracils (44, 65) or 5-halo-6-methyl-3-phenyluracils (45, 70) with 2-chloroethanol, allyl bromide, or 2-cyclohexenyl bromide. When 63 and 64 (1- or 3-CH₂COOEt) were hydrolyzed in concd HCl, 5-bromo-3-carboxymethyl-6methyl-1-phenyluracil (79) and 5-bromo-1-carboxymethyl-6-methyl-3-phenyluracil (80) were obtained, respectively. The Michael reaction of 65 with ethyl acrylate gave 5bromo-3-ethoxycarbonylethyl-6-methyl-3-phenyluracil (81).

In the iodination of the 5 position of the pyrimidine ring, 5-iodo-3,6-dimethyl-1-phenyluracil (82) and 5-iodo-1,6-dimethyl-3-phenyluracil (83) were obtained from 17 and 24, respectively, by a conventional route (Table III).

1,3-Substituted 5-halo-6-methyluracils (44-83), obtained by various halogenation methods, were then heated at 100° in a sealed tube with NH₃, or amines in DMF, to give

				0	³ N CH ₃				
					R ₁				
Compd No.	R ₁	R3	x	Mp, °C	Appearance (colorless)	Recrystn solvent	Method	Yield, %	Formula ^a
44	Ph	H	 Cl	>300	Needles	AcOH	A		C ₁₁ H ₉ ClN ₂ O ₂
45	H	Ph	ci	257	Needles	MeOH	A	83	$C_{11}H_{9}CIN_{2}O_{2}$
46	Ph	Me	a	232	Needles	MeOH	A	73	$C_{12}H_{11}CIN_2O_2$
47	Me	Ph	Ci	158	Needles	Ligroin	A	73	$C_{12}H_{11}CIN_{2}O_{2}$
48	Me	Me	ci	150	Needles	MeOH	A	67	C,H,CIN,O,
49	Ph	Me	Br	238	Needles	MeOH	В	85	$C_{12}H_{11}CIN_2O_2$
50	Me	Me	Br	138	Needles	MeOH	B	77	C ₇ H ₉ BrN ₂ O ₂
51	Cyclopentyl	Me	Br	158	Needles	MeOH	B	91	$C_{11}H_{15}BrN_2O_2$
52	Cyclohexyl	Me	Br	240	Needles	MeOH	B	96	$C_{12}H_{17}BrN_2O_2$
53	p-CIC ₆ H ₄	Me	Br	240	Needles	MeOH	B	88	$C_{12}H_{10}BrClN_2O$
54	$p \sim c_6 m_4$	Me			Needles	MeOH	B	71	$C_{13}H_{13}BrN_2O_2$
55	p-CH ₃ C ₆ H ₄	Me	Br	245 209	Needles	MeOH	B	85	$C_{13}H_{13}BrN_2O_3$
56	p-CH ₃ OC ₆ H ₄ Me	Ph	Br		Leaflets	MeOH	B	89	$C_{12}H_{11}BrN_2O_2$
50 57	Me	Cyclopentyl	Br	198		MeOH	B	80	$C_{12}H_{11}BH_{2}O_{2}$ $C_{11}H_{15}BrN_{2}O_{2}$
58	Me		Br	174	Needles Needles	MeOH	B	65	
	Me	Cyclohexyl	Br	175		МеОН	B	91	$C_{12}H_{17}BrN_2O_2$
5 9		PhCH ₂	Br	135	Prisms		B	87	$C_{13}H_{13}BrN_2O_2$
6 0	Me Ph	PhCH ₂ CH ₂	Br	117	Needles	MeOH	B	69	$C_{14}H_{15}BrN_2O_2$
61 62		Et	Br	209	Leaflets	МеОН МеОН	B	57	$C_{13}H_{13}BrN_2O_2$
62	Et Ph	Ph	Br	165	Needles		B	72	$C_{13}H_{13}BrN_2O_2$
		EtOOCCH ₂	Br	184	Prisms	MeOH		76	$C_{15}H_{15}BrN_{2}O_{4}$
64	EtOOCCH ₂	Ph	Br	247	Needles	MeOH	B		$C_{15}H_{15}BrN_2O_4$
65	Ph	H	Br	293	Needles	AcOH	B	83	$C_{11}H_{9}BrN_{2}O_{2}$
66	Me	H	Br	264	Prisms	MeOH	B	5 7	$C_6H_7BrN_2O_2$
67	n-Bu	H	Br	164	Prisms	MeOH-H ₂ O	B	70	$C_{9}H_{13}BrN_{2}O_{2}$
68	Cyclopentyl	H	Br	185	Needles	MeOH	B	90	$C_{10}H_{13}BrN_2O_2$
69	Cyclohexyl	H	Br	261	Prisms	MeOH	В	92	$C_{11}H_{15}BrN_2O_2$
70	H	Ph	Br	281	Needles	MeOH	B	89	$C_{11}H_9BrN_2O_2$
71	Ph	HOCH ₂ CH ₂	Br	188	Prisms	MeOH	Ċ	96	C ₁₃ H ₁₃ BrN ₂ O ₃
72	HOCH ₂ CH ₂	Ph	Br	164	Needles	MeOH	C C C	69	$C_{13}H_{13}BrN_2O_3$
73	Ph	CH ₂ =CHCH ₂	Cl	157	Needles	MeOH-H ₂ O	C	95	$C_{14}H_{13}CIN_2O_2^c$
74	Ph	$CH_2 = CHCH_2$	Br	175	Prisms	EtOH	C	81	$C_{14}^{14}H_{13}^{13}BrN_{2}O_{2}^{1}$
75	CH ₂ =CHCH ₂	Ph	Cl	136	Needles	MeOH	C	45	$C_{14}H_{13}CIN_2O_2$
7 6	CH ₂ =CHCH ₂	Ph	Br	136	Needles	EtOH-H ₂ O	С	72	$C_{14}H_{13}BrN_2O_2$
77	Ph	2-cyclohexenyl	Br	247	Needles	MeOH	С	Trace	$C_{17}H_{17}BrN_{2}O_{2}$
78	Ph	<i>i-</i> Pr	Br	230	Needles	MeOH	C	12	$C_{14}H_{15}BrN_{2}O_{2}$
79	Ph	HOOCCH ₂	Br	252	Needles	EtOH	D	84	$C_{13}H_{11}BrN_{2}O_{4}$
80	HOOCCH ₂	Ph	Br	192	Needles	EtOH	D	79	$C_{13}H_{11}BrN_2O_4$
81	Ph	EtOOCCH ₂ CH ₂	Br	174	Prisms	MeOH	C	Trace	$C_{16}H_{17}BrN_2O_4$
82	Ph	Me	1	216	Needles ^b	MeOH	E	73	$C_{12}H_{11}IN_2O_2$
83	Me	Ph	1	235	Needles ^b	MeOH	Ε	83	$C_{12}H_{11}IN_{2}O_{2}$

^aAll Compds were analyzed for C, H, N. ^bYellow crystal. ^cC: calcd, 60.77; found, 60.34.

desired 1,3-substituted 5-amino-6-methyluracils (84-129) (Table IV).

Pharmacology. The resulting compounds were classified into 5-substituted 3-alkyl-6-methyl-1-phenyluracils (group A), 5-substituted 1-alkyl-6-methyl-3-phenyluracils (group B) and others (group C) and their acute toxicities [LD_{50} in mice (ip)], analgetic activities [according to Haffner's method with a threshold dose of morphine in mice (ip) and the phenylbenzoquinone writhing technique in mice (sc)], antipyretic activities [febrile rats by TTG-a pyrogen obtained from *Pseudomonas fluorescens*, Fujisawa Pharm. Co.-(po)], and antiinflammatory activities [rat hind paw edema induced by carrageenin (po)] were investigated (Table V). The 5-halouracil derivatives (groups A and B) were found to exhibit low acute toxicity, but, due to their insignificant

Table IV. 1,3-Substituted 5-Amino-6-methyluracils

pharmacological activities, these compounds were of little interest.

Acute toxicities of both groups A and B of 5-dialkylaminouracil derivatives were weak being 0.5 to 0.25 of that of aminopyrine. However 121 and 123 (group C) showed marked acute toxicities.

As to analgetic activities, 84, 91, 94, and 99 (group A) and 101, 102, 108, 111, 112, 114, and 115 (group B) showed activity equal to or more pronounced than that of aminopyrine. As to antipyretic activities, 99 (group A), 101, 102, 107, 108, 113, and 114 (group B), and 120, 128, and 129 (group C) gave marked results. As to antiinflammatory activities, 84 and 99 (group A) and 107 and 115 (group B) showed the same or more action than that of benzydamine.

				R ₁				
Compd No.	R ₁	R3	А	Mp ^a or bp (mm), °C	Appearance ^b (colorless)	Recrystn solvent	Yield, %	Formula ^c
84	Ph	Me	Me ₂ N	118	Prisms	Ligroin	77	C ₁₄ H ₁₇ N ₃ O ₂
85	Ph	Me	Et,N	89	Prisms	MeOH-H,O	59	$C_{16}H_{21}N_{3}O_{2}$
86	Ph	Me	(CH,=CHCH,),N	93	Needles	PB	45	$C_{18}H_{21}N_{3}O_{2}$
87	Ph	Me	NH ₂	251	Needles	MeOH	33	$C_{12}H_{13}N_{3}O_{2}$
88	Ph	Me	MeNH	129	Prisms	Ligroin	21	$C_{13}H_{15}N_{3}O_{2}$
89	Ph	Me	EtNH	110	Prisms	PB	38	$C_{14}H_{17}N_{3}O_{2}$
90	Ph	Me	<i>i</i> •PrNH	118	Needles	MeOH-H ₂ O	57	$C_{15}H_{19}N_{3}O_{2}$
91	Ph	Me	Pyrrolidinyl	124	Needles	MeOH-H.O	85	$C_{16}H_{19}N_{3}O_{2}$
92	Ph	Me	Piperidyl	132	Needles	PB	92	$C_{17}H_{21}N_{3}O_{2}$
93	Ph	Me	Morpholinyl	147	Needles	MeOH-H,O	33	C ₁₆ H ₁₉ N ₃ O ₃
94	Ph	Н	Me ₂ N	191	Needles	MeOH-H,O	94	C ₁₃ H ₁₅ N ₃ O ₂
95	Ph	Et	Me, N	91	Needles	PB	91	C ₁₅ H ₁₉ N ₃ O ₂
96	Ph	Et	Et, N	173-175 (0.3)	Oil		62	$C_{17}H_{23}N_{3}O_{2}$
97	Ph	Et	Piperidyl	104	Needles	P B	96	$C_{18}H_{23}N_{3}O_{2}$
98	Ph	n∙Bu	Me ₂ N	64	Needles	MeOH-H ₂ O	75	$C_{17}H_{23}N_{3}O_{2}$
99	Ph	CH,=CHCH,	Me	180-183 (0.4)	Oil	•	66	$C_{16}H_{19}N_{3}O_{2}$
100	Ph	HOCH,CH,	Me ₂ N	148	Needles	MeOH-H ₂ O	78	$C_{15}H_{19}N_{3}O_{3}$
101	Me	Ph í í	Me	135	Needles	Ligroin	87	C, H, N, O,
102	Me	Ph	Et N	121	Prisms	Ligroin	73	$C_{16}H_{21}N_{3}O_{2}$
103	Me	Ph	<i>n</i> -Bu ₂ N	99	Prisms	PĔ	17	$C_{20}^{10}H_{29}^{11}N_{3}O_{2}^{11}$
104	Me	Ph	(CH,=CHCH,),N	87	Needles	PE	23	C, H, N, O,
105	Me	Ph	NH,	260	Prisms	MeOH	40	$C_{12}H_{13}N_{3}O_{2}$
106	Me	Ph	MeŃH	152	Prisms	H,O	34	C, H, N, O,
107	Me	Ph	<i>i</i> ·PrNH	183	Needles	MeOH	92	C., H., N.O.
108	Me	Ph	n-BuNH	110	Needles	Ligroin	70	C., H., N.O.
109	Me	Ph	s-BuNH	151	Needles	MeOH-H ₂ O	66	$C_{16}^{16}H_{21}^{21}N_{3}O_{2}^{2d}$ $C_{16}H_{19}N_{3}O_{2}$
110	Me	Ph	Pyrrolidinyl	162	Needles	MeOH-H ₂ O	84	$C_{16}H_{19}N_{3}O_{2}$
111	Me	Ph	Piperidyl	200	Prisms	MeOH	55	C,,H,,N,O,
112	Me	Ph	Morpholinyl	229	Needles	MeOH	47	C, H, N,O,
113	Et	Ph	Me ₂ N	190	Prisms	MeOH	95	$C_{15}H_{19}N_{3}O_{2}$
114	Et	Ph	Et ₂ N	110	Prisms	Ligroin	83	$C_{17}H_{23}N_{3}O_{2}$
115	CH2=CHCH2	Ph	Me ₂ N	139	Needles	MeOH−H ₂ O	93	$C_{16}H_{19}N_{3}O_{2}$
116	HOCH2CH2	Ph	Me ₂ N	197	Prisms	MeOH-H ₂ O	69	$C_{15}H_{19}N_{3}O_{3}$
117	p-ClC ₆ H ₄	Me	Me ₂ N	144	Needles	MeOH-H₂O	45	$C_{14}H_{16}CIN_{3}O_{2}$
118	p·CH ₃ C ₆ H ₄	Me	Me ₂ N	123	Needles	MeOH-H₂O	70	C15H19N3O2
119	p-CH ₃ OC ₆ H ₄	Me	Me ₂ N	155	Needles	MeOH−H ₂ O	66	C ₁₅ H ₁₉ N ₅ O ₃
120	Me	PhCH ₂	Me ₂ N	185-195 (0.2)	Oil		60	$C_{15}H_{19}N_{3}O_{2}$
121	Cyclopentyl	Me	Me ₂ N	104	Leaflets	Ligroin	46	$C_{13}H_{21}N_{3}O_{2}$
122	Cyclopentyl	Н	Me ₂ N	234	Needles	MeOH	34	$C_{12}H_{19}N_{3}O_{2}$
123	Cyclohexyl	Me	Me ₂ N	122	Needles	MeOH-H ₂ O	94	$C_{14}H_{23}N_{3}O_{2}$
124	Cyclohexyl	Me	Pyrrolidinyl	104	Leaflets	MeOH-H ₂ O	76	$C_{16}H_{25}N_{3}O_{2}$
125	Cyclohexyl	Me	Piperidyl	145	Needles	MeOH-H ₂ O	54	C ₁₇ H ₂₇ N ₃ O ₂
126	Cyclohexyl	Me	Morpholinyl	137	Needles	MeOH-H ₂ O	59	$C_{16}H_{25}N_{3}O_{3}$
127	Cyclohexyl	Н	Me ₂ N	189	Prisms	MeOH	59	$C_{13}H_{21}N_3O_2$
128	Me	Cyclopentyl	Me ₂ N	142	Prisms	Ligroin	64	$C_{13}H_{21}N_{3}O_{2}$
129	Me	Me	Me ₂ N	94	Needles	H₂O	81	$C_9 H_{15}N_3O_2$

^aHCl salt: 84 (mp 210°), 99 (mp 190-191°), 101 (mp 216°), 115 (mp 207°). ^bRecrystn solvent: PB (petr ether, bp 50-90°), PE (petr ether, bp 30-70°). ^cAll compds were analyzed for C, H, N. ^dN: calcd, 14.62; found, 15.20.

Table V. Acute Toxicity and Analgetic, Antipyretic, and Antiinflammatory Activities of 1,3,5-Substituted 6-Methyluracils

			Analgetic activ	ity [ED _{\$0}] ^b	A		Antiinflome	matan for
	Compd		dodified Haffner's ^c				Antiinflam	latory 7 %
Group	No	LD ₅₀ ^a	method	PO writhing ^d	100 mg/kg	200 mg/kg	100 mg/kg	200 mg/kg
Α	4 9	>2000	Ca. 300	73 (33-160)		-0.1		20
	74	>2000	>300	>300		5.8		50
	79	>2000	>300	180 (62–522)		5.8		20
	82	>2000	>300	Ca. 200-300		5.5		51
	84	815 (755-880)	98 (74-129)	56 (23-134)		-0.1		65
	85	830 (741-930)	172 (125-237)	>300		-0.4		46
	86	800 (702-912)	102 (54-194)	>300		5.9		46
	90	558 (507-614)	89 (48-165)	137 (69-274)		1.9		45
	91	1250 (1126-1388)	146 (97-219)	31 (12-76)		0.2		33
	92	>2000	245 (136-441)	35 (14-86)		1.0		37
	94	591 (563-624)	134 (71-255)	60 (15-241)		1.8		35
	95	510 (470-533)	63 (47-85)	146 (56-380)		-0.7		51
	96	845 (747-955)	98 (52-186)	140 (50-392)		0.7		53
	99	835 (758-918)	65 (47-89)	70 (32-155)	-0.7	-6.6		75
	100	1040 (953–1130)	215 (123-376)	54 (29-100)	-0.7	0.8		36
В	56					1.5		41
-	76	393 (362-426)	170 (110–264) 63 (35–113)	130 (43–390) >300		0.2		48
	83	382 (347-420)		>300		7.6		48
	101	445 (412-480)	122 (64-232)		-5.6	-7.7		44
	101	885 (763-1027)	102 (67-156)	46 (22-97)				45
	102	1100 (957–1265)	93 (73-119)	53 (23-121)	1.9	-5.0		
	107	648 (620–677)	151 (117–198)	73 (37–142)		-4.6		64 48
		518 (491-547)	94 (75-118)	47 (24–94)		-5.5		
	109	355 (319–381)	95 (52-173)	88 (39-198)		-0.5		58
	110	1460 (1304–1635)	214 (113-407)	>300		-0.2		32
	111	>2000	97 (54–175)	80 (37-172)		3.3		27
	112	1110 (965–1277)	71 (32–156)	59 (21-165)		2.6		35
	113	1100 (1000-1210)	136 (83-225)	77 (31–193)		-5.6		37
	114	660 (631-690)	79 (45–140)	95 (50-181)		-5.5	c 0	57
	115	644 (593-691)	42 (29-51)	45 (23-89)		-0.6	52	73
_	116	>2000	170 (124–233)	130 (96–176)		2.0		31
С	1	785 (737-836)	146 (117–178)	72 (38–136)	-0.2	-1.8		36
	50	252 (230-276)	104 (67–161)	51 (30-87)		-3.2		57
	51	422 (380-468)	81 (51-130)	92 (51-166)		4.1		26
	52	>2000	84 (45–155)	56 (20-155)		2.7		22
	53	>2000	>300	>300		4.6		18
	54	>2000	>300	230 (96-522)		5.7		35
	55	>2000	225 (125-405)	Ca. 200–300		7.3		44
	5 7	945 (808-1106)	89 (51-156)	42 (18–97)		5.0		32
	5 9	719 (691–748)	85 (53-136)	85 (30-246)		6.4		37
	117	755 (696-819)	166 (95-307)	290 (95-882)		1.9		41
	119	1690 (1482-1927)	246 (144-417)	>300		11.0		41
	120	680 (582–796)	170 (112–258)	Ca. 300		-8.9		38
	121	33 (30-36)	50:5/6 (2/6 death)	11 (6-21)	5.4		6/7 death	
	123	125 (89-175)	100:2/5 (3/8 death)	19 (6-62)		4.3	2/6 death	38
	124	>2000	>300	>300		6.5		24
	125	>2000	Ca. 300	>300		2.8		22
	126	510 (460-566)	167 (118-237)	190 (66-551)		-0.2		44
	127	1540 (1426-1663)	204 (109-382)	55 (24-128)		2.8		38
	128	1220 (1156-1287)	128 (93-178)	62 (21-186)	-0.3	-5.1		55
	129	591 (542-644)	139 (99-195)	29 (12-73)		-5.6		37
	Aminopyrine	269 (255-284)	123 (89–170)	32 (20-52)	-4.1		69	86
	Benzydamine	109 (101-118)	45 (29-70)	13 (2-31)			52	67
	Phenylbutazone	419 (388-453)	122 (68-220)	96 (38-245)		0.1	(50 mg-62)	
	Aspyrine	400 (360-450)	300:1/2	49 (21-113)		-2.4		47
				((cont 5.5-6			

 ${}^{a}LD_{50}$ (mg/kg ip in female mice). ${}^{b}Analgetic activity, ED_{50}$ (mg/kg in male mice). ${}^{c}Haffner's$ method with a threshold dose of morphine in mice (ip). ${}^{d}The$ phenyl benzoquinone writhing technique in mice (sc). ${}^{e}Antipyretic activity$ (febrile rats by TTG) (mg/kg po in male rats). ${}^{f}Antiinflammatory$ (mg/kg po in male rats).

Experimental Section

6-Methyl-1-phenyluracil (6). Method A. A mixt of 8.4 g of diketene and 13.6 g of phenylurea was heated to reflux for 3 hr in 80 ml of AcOH, then AcOH was evapd, 60 ml of 10% NaOH was added to the residue, the mixt was filtered to remove insol matters, and the filtrate was acidified with HCl and filtered to give 6.6 g of the crude product, mp 278-281°. It was recrystd from AcOH to give needles of mp 281-283°, lit.^{4a} mp 272-274°. The yield was 4.6 g (22.6%).

Method B. $Hg(AcO)_2(0.1 g)$ was further used in method A to give 8.3 g of the crude product (mp 281°). When this was mixed with 6 obtd by method A, no depression in mp was observed.

Method C. NEt₃ (5 drops) was also used in method A to give

15.0 g of the crude product (mp 281°). No mmp depression with 6 obtd by method A.

Method D. A mixt of 8.4 g of diketene, 13.6 g (0.1 mole) of phenylurea, and 0.1 g of Hg(AcO)₂ was kept overnight in 100 ml of AcOH and then AcOH is evapd. The resulting 1-acetoacetyl-3-phenylurea (2) was, without isolation from the reaction mixt, heated for 30 min on a water bath with 80-90 g of polyphosphoric acid ($P_{2,g}$ -H₃PO₄, 1:1) and cooled, a large amt of cold H₂O was added, and the mixt was filtered to give 16.2 g of the crude product, mp 272-278°. With 6 obtd by method A, no mmp depression took place.

1-Substituted 6-Methyluracils (7-12) (Table 1). Method D was applied; thus, a mixt of 8.4–16.8 g (0.1–0.2 mole) of diketene, 0.1 mole of monosubstituted urea, and 0.1 g of Hg(AcO)₂ in 100 ml of

AcOH was allowed to stand overnight, then AcOH was evapd, the residue was heated for 30 min on a water bath with 80–90 g of polyphosphoric acid and cooled, a large amt of cold H_2O was added, the mixt was filtered, and the resulting crude product was recrystd. The intermediate 3-substituted 1-acetoacetylurea was, if desired, isolated by recrystg a part of the residue from MeOH- H_2O [substituents: cyclopentyl (3), mp 128°; p·CH₃C₆H₄ (4), mp 172°; p·CH₃OC₆H₄ (5), mp 146°] and was heated with polyphosphoric acid as mentioned above.

1,3-Disubstituted 6-Methyluracils (17-40) (Table 11). Method A. 1-Substituted 6-methyluracil (6-12) or 3-substituted 6-methyluracil⁵ (13-16) (0.1 mole) was dissolved in 45 ml of 10% NaOH soln and the mixt was stirred for 3 hr with 0.12 mole of Me₂SO₄ at room temp. When the reaction soln became almost neutral, it was filtered and the resulting crude product was recrystd.

Method B. 1-Substituted 6-methyluracil (6, 8, 9) or 3-phenyl-6methyluracil (13) (0.1 mole) was dissolved in NaOEt soln (from 2.3 g of Na and 200 ml of abs EtOH), the mixt was heated to reflux for 3 hr with 0.12 mole of alkyl halides (e.g., EtBr, *i*-PrBr, *n*-BuBr, 2chloroethanol, ethyl chloroacetate, chloroacetoamide), the solvent was evapd, 100 ml of 10% NaOH soln was added to the residue, the mixt was filtered, and the resulting crude product was recrystd.

1-Cyclohexyl-6-methyl-5-nitrouracil (41). 9 (10.4 g) was gradually added to a stirring, cold (0-5°) mixt of 50 ml of concd H_2SO_4 and 50 ml of concd HNO₃, the mixt was allowed to react for 1 hr and poured over ice water, and the isolated mass was recrystd from MeOH to give 6.9 g (54.5%) of prisms, mp 235-237°. Anal. (C₁₁H₁₅N₃O₄) C, H, N.

1-Cyclohexyl-3,6-dimethyl-5-nitrouracil (42). 20 (11 g) was treated in a mixt of 50 ml of concd H_2SO_4 and 50 ml of concd HNO_3 above. Recrystn from MeOH gave 7.5 g (55.6%) of yellow needles, mp 156°. Anal. $(C_{12}H_{17}N_3O_4)$ C, H, N.

3,6-Dimethyl-5-nitro-1-nitrophenyluracil (43). 17 (11 g) was treated in a mixt of 50 ml of concd H₂SO₄ and 50 ml of concd HNO₃. Recrystn from AcOH gave 8.5 g (55.6%) of yellow needles, mp 281°. Anal. $(C_{12}H_{10}N_4O_6)$ C, H, N.

1,3-Substituted 5-Halo-6-methyluracils (44-83) (Table 111). Method A. 1,3-Substituted 6-methyluracil (6, 13, 17, 18, 24) (0.1 mole) was added to 180 ml of 5% Ac₂O-AcOH, 60 mg of FeCl₃ was then added, and the mixt was heated to reflux for 3 hr with simultaneous dropwise addn of 15 g of SO₂Cl₂. After completion of the reaction, the mixt was allowed to cool, H₂O was added, and the ppt was filtered.

Method B. 1,3-Disubstituted 6-methyluracils (17-29, 33, 36, 38), 1-substituted 6-methyluracils (6-9), 6-methyl-3-phenyluracil (13), or 1-butyl-6-methyluracil⁷ (0.1 mole) were added to 80 ml of AcOH, and 16 g of Br₂ and 30 ml of AcOH were gradually added with stirring until the mixt was decolorized. H₂O (300 ml) was added, and the resulting product was filtered, washed with H₂O, and recrystd.

Method C. To a soln of 2.3 g of Na in 200 ml of EtOH were added 0.1 mole of 44, 45, 65, or 70 (Table III) and 0.11-0.12 mole of alkylating agent (e. g., 2-chloroethanol, allyl bromide, 2-cyclohexenyl bromide, *i*-PrBr) and the mixt was heated to reflux for 3-5 hr on a water bath. After the reaction was over, EtOH was evapd, the residue was washed with H_2O , 30-50 ml of 10% NaOH soln was added, and the insol matter was collected, washed with H_2O , and recrystd.

Method D. To 50 ml of dioxane was added 10 g of 63 or 64 (Table 111) and the mixt was heated to reflux with 20 ml of concd HCl. The product was filtered off, and recrystd from EtOH.

Method E. To 200 ml of AcOH were added 6.1 g (0.03 mole) of 17 or 24 and 3.8 g (0.03 mole) of l_2 , fuming HNO₃ was dropped in gradually, and the mixt was allowed to react until the l_2 color disap-

peared. After the reaction, the mixt was poured over large quantity of H_2O , and the separated product was collected by filtration and recrystd from MeOH.

5-Chloro-6-methyl-1-phenyluracil (44). 6 (6.1 g) was added to 80 ml of Ac₂O, 2.6 ml of concd HCl and 11 ml of 10% NaClO soln were added successively and the mixt was allowed to react for 3 hr at below 60°. It was poured over ice H₂O, allowed to stand overnight and filtered, and the resulting mass was recrystd from AcOH to give 1.5 g (21.2%) of needles, mp > 300°. No mmp depression with 44 obtd by method A.

5-Chloro-6-methyl-3-phenyluracil (45). 13 (6.1 g) was added to 80 ml of Ac_2O and the mixt was treated in the above chlorination. Recrystn from MeOH gave 1.8 g (25.3%) of a powder, mp 257°, no mmp depression with 45 obtd by method A.

5-Bromo-1,3,6-trimethyluracil (50). 1,3,6-Trimethyluracil (18) (4.2 g) in 80 ml of $CHCl_3$ was heated to reflux for 5 hr with 5.3 g of NBS. The soln was filtered, the resulting mother liquor was washed (H₂O) and evapd, and the residue was recrystd from H₂O to give 1.9 g (30.0%) of needles, mp 139°, no mmp depression with 50 obtd by method B.

5-Bromo-3-(2-ethoxycarbonylethyl)-6-methyl-1-phenyluracil (81). A mixt of 15 g of 65, 10 g of ethyl acrylate, 50 ml of pyridine, and 50 ml of H₂O was heated to reflux for 5 hr and the reaction product was recrystd from MeOH to give 1.3 g (6.8%) of prisms, mp 173°; no mmp depression with 81 obtd by method C.

1,3-Substituted 5-Amino-6-methyluracils (84-129) (Table IV). To 50 ml of DMF were added 0.1 mole of 1,3-substituted 5-bromo-6-methyluracils (49-59, 61, 62, 71, 72, 74, 76), or 1-substituted 5bromo-6-methyluracils (65, 68, 69), then 0.3-0.5 mole of amine (e. g., NH₃, 40% aq soln of Me₂NH, Et₂NH, diallylamine, n·Bu₂NH, 30% aq soln of MeNH₂, EtNH₂, *i*·PrNH₂, *n*·BuNH₂, *sec*-BuNH₂, pyrrolidine, piperidine, morpholine) was added, and the mixt was heated at 100° for 8-10 hr in a sealed tube. When the bp of the amine was comparatively high, it was not necessary to use a sealed tube. After the reaction, DMF and an excess of amine were removed *in vacuo*, H₂O was added to the residue, the mixt was filtered, and the sepd product was recrystd. Instead of DMF, other solvents such as HCONH₂, MeCN, and DMSO can be used.

Acknowledgments. We want to offer our cordial thanks to Dr. K. Ohata and other staff-members of Research Laboratories, Nippon Shinyaku Co., Ltd., for their cooperation in carrying out the screening test for pharmacological activities.

References

- (1) S. Senda, K. Hirota, and G.-N. Yang, Chem. Pharm. Bull., 20, 399 (1972) (paper 14).
- (2) S. Senda. A. Suzui, and M. Honda, *ibid.*, 6, 487 (1958).
- (3) S. Senda and A. Suzui, *ibid.*, 6, 481 (1958).
- (4) (a) V. I. Gunar and S. I. Zav'yalov, Dokl. Akad. Nauk. SSSR, 158, 1358 (1964); Chem Abstr., 62, 2773e (1965); (b) S. I. Zav'yalov and V. I. Gunar, Izv. Akad. Nauk. SSSR. Ser. Khim., 201 (1965); Chem. Abstr., 62, 11710d (1965).
- (5) (a) S. Senda and A. Suzui, *Chem. Pharm. Bull.* 6, 476 (1958);
 (b) H. M. Loux and E. J. Soboczenski, U. S. Patent 3,254,082 (1966); *Chem. Abstr.*, 65, 7193 (1966).
- (6) K. Schmedes, Justus Liebigs Ann. Chem., 44, 196 (1925).
- (7) G. V. Kondrat'eva, V. I. Gunar, G. A. Kogan, and S. I.
 Zav'yalov, *Izv. Akad. Nauk. SSSR Ser Khim.*, 1219 (1966);
 Chem. Abstr., 65, 16967 (1966).